Abstract

BackgroundLong non-coding RNAs (lncRNAs) have been demonstrated to play important roles in human diseases. Yet, the functions of lncRNAs in neurodegenerative disorders, such as Parkinson's disease (PD) are poorly understood. In this study, we used human neuroblastoma SH-SY5Y cell line as a cell-basedin vitro PD model, and investigated the role of lncRNA, Non-Coding RNA Activated By DNA Damage (NORAD) in 1-methyl-4-phenylpyridinium (MPP+)-induced PD-like cytotoxicity. MethodsSH-SY5Y cells were culturedin vitro, and treated with MPP + at various concentrations, or of various durations of times to induce PD-like cytotoxic events. qRT-PCR was used to measure MPP+-induced NORAD expression changes. Lentiviral transduction was applied to stably upregulate or downregulate NORAD in SH-SY5Y cells. The effects of NORAD upregulation or downregulation on MPP+-induced cytotoxic events, including dose-dependent and time-dependent cell death, apoptosis, caspase 3/7, reactive Oxygen Species (ROS) and lactate dehydrogenase (LDH) activities, were quantitatively investigated. ResultsMPP + induced cytotoxicity, and downregulated NORAD in both dose- and time- dependent manners in SH-SY5Y cells. Lentiviral-induced NORAD upregulation was found to protect against MPP+-induced cytotoxicity in SH-SY5Y cells, as it rescued MPP+-induced cellular destruction and apoptosis, as well as decreased MPP+-induced caspase 3/7, ROS and LDH activities. Alternatively, NORAD downregulation was found to significantly deteriorate MPP+-induced cytotoxicity in SH-SY5Y cells. ConclusionWe presented a novel functional role of lncRNA NORAD in regulating human Parkinson’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.