Abstract

Ovarian cancer is a markedly heterogeneous malignancy characterized by various histological subtypes. Molecular biomarkers have been indicated to serve significant functions in the early diagnosis and treatment of early-stage ovarian cancer. However, the detailed mechanism underlying the tumorigenesis of ovarian cancer remains unclear. The present study aimed to identify a novel long non-coding RNA in patients with ovarian cancer. Nicotinamide nucleotide transhydrogenase-antisense 1 (NNT-AS1) was markedly downregulated in patients with ovarian cancer and in cultured human ovarian cancer cells. Knockdown of NNT-AS1 in the human ovarian cancer cell lines HO-8910 and SK-OV-3 promoted colony formation and arrested the cell cycle at G0/G1 phase. Furthermore, Transwell demonstrated that the downregulation of NNT-AS1 increased cell migration and invasion by ~60 and 70%, respectively, in HO-8910 and SK-OV-3 cells. Furthermore, cell apoptosis was inhibited by the transfection of siNNT-AS1 in the two cell lines, whereas the relative activities of caspase-3 and caspase-9 were decreased. These results indicated a protective function of NNT-AS1 in human ovarian cancer, providing novel insights into the diagnosis and treatment of ovarian cancer in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call