Abstract

Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is regarded as an oncogene in multiple cancers. Previous studies have shown that NEAT1 is involved in the proliferation and tumorigenesis of glioma cells, while miR-185-5p functions as a tumor suppressor in glioma. However, the underlying molecular mechanism of NEAT1 in glioma, especially in association with miR-185-5p, has not been studied. In this study, we first demonstrated that NEAT1 expression was upregulated, and miR-185-5p downregulated in glioma tissues and cells. More important, NEAT1 expression was negatively correlated with miR-185-5p expression in glioma tissues. In vitro and in vivo experiments verified that NEAT1 was a competing endogenous RNA for miR-185-5p for promoting DNA methyltransferase 1 (DNMT1) expression and activated mammalian target of rapamycin (mTOR) signaling, thus inhibiting apoptosis, and promoting glioma migration, proliferation, and epithelial-mesenchymal transition process. Furthermore, NEAT1 knockdown suppressed tumor growth and reduced the expression of proliferation antigen Ki-67, DNMT1, and mTOR, but upregulated the expression of miR-185-5p in vivo. Finally, with mTOR inhibitor rapamycin, we confirmed that NEAT1 promoted glioma activity through mTOR signaling both in vitro and in vivo. In conclusion, these results suggest that NEAT1 promotes glioma tumorigenesis via miR-185-5p/DNMT1/mTOR signaling, which may provide a new target for the diagnosis and therapy of glioma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.