Abstract

Accumulating evidence has indicated that long noncoding RNA NEAT1 exerts critical roles in cancers. So far, the detailed biological role and mechanisms of NEAT1, which are responsible for human gastric cancer (GC), are still largely unknown. Here, we observed that NEAT1 and STAT3 expressions were significantly upregulated in human GC cells including BGC823, SGC-7901, AGS, MGC803, and MKN28 cells compared with normal gastric epithelial cells GES-1, while miR-506 was downregulated. We inhibited NEAT1 and observed that NEAT1 inhibition was able to repress the growth, migration, and invasion of GC cells. Conversely, overexpression of NEAT1 exhibited an increased ability of GC progression in BGC823 and SGC-7901 cells. Bioinformatics analysis, dual luciferase reporter assays, RIP assays, and RNA pull-down tests validated the negative binding correlation between NEAT1 and miR-506. In addition, it was found that miR-506 can modulate the expression of NEAT1 in vitro. STAT3 was predicted as a messenger RNA (mRNA) target of miR-506, and miR-506 mimics can suppress STAT3 mRNA expression. Subsequently, it was observed that downregulation of NEAT1 can restrain GC development by decreasing STAT3, which can be reversed by miR-506 inhibitors. Therefore, it was hypothesized in our study that NEAT1 can be recognized as a competing endogenous RNA to modulate STAT3 by sponging miR-506 in GC. In conclusion, we implied that NEAT1 can serve as an important biomarker in GC diagnosis and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call