Abstract

Integration of non-coding RNAs and miRNAs with physiological processes in animals, including nutrient metabolism, is an important new focus. Twenty-three transporter proteins control cellular zinc homeostasis. The transporter Zip14 (Slc39a14) responds to proinflammatory stimuli. Using enterocyte-specific Zip14 knockout mice and RNA-sequencing and quantitative polymerase chain reaction (qPCR), we conducted transcriptome profiling of proximal small intestine, where Zip14 is highly expressed, using RNA from whole intestine tissue, isolated intestinal epithelial cells (IECs) and intestinal organoids. H19, U90926, Meg3, Bvht, Pvt1, Neat1 and miR-7027 were among the most highly expressed genes. Enterocyte-specific deletion of Zip14 demonstrated tissue specific expression, as such these changes were not observed with skeletal muscle. Chromatin immunoprecipitation (ChIP) assays of chromatin from isolated intestinal epithelial cells showed that enterocyte-specific Zip14 deletion enhanced binding of proinflammatory transcription factors (TFs) signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa beta (NF-ĸβ) to promoters of H19, Meg3 and U90926. We conclude enterocyte-specific ablation of Zip14 restricts changes in those RNAs to the intestine. Binding of proinflammatory TFs, NF-ĸβ and STAT3 to the H19, Meg3 and U90926 promoters is consistent with a model where Zip14 ablation, leads to increased TF occupancy, allowing epigenetic regulation of specific lncRNA genes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call