Abstract

AimsAtherosclerosis (AS) performs the important pathogenesis which refers to coronaryheart and vascular diseases. Long non-coding RNAs (lncRNAs) was reported to be related to the AS progression. We aimed to probe the role and potential mechanism of Myocardial Infarction Associated Transcript (MIAT) in AS. Materials and methodsLevels of MIAT, microRNA-148b (miR-148b) and pregnancy-associated plasma protein A (PAPPA) were detected by quantitative Real-time polymerase chain reaction (qRT-PCR) in oxidized low-density lipoprotein (ox-LDL)-induced human aorta vascular smooth muscle cells (HA-VSMCs). Proliferation and migration were examined by Cell counting kit-8 (CCK-8) and wound-healing assays, respectively. Protein levels of Ki-67, proliferating cell nuclear antigen (PCNA), matrix metalloproteinase (MMP)-2, MMP-9 and PAPPA were examined by western blot assay. Ki-67 and PCNA level was detected by flow cytometry. The interaction among MIAT, miR-148b and PAPPA was confirmed via dual-luciferase reporter and RNA immunoprecipitation (RIP). The biology role of MIAT was detected by an AS model in vivo. Key findingsThe levels of MIAT and PAPPA were augmented, whereas mature miR-148b level was repressed in ox-LDL-induced AS model. The inhibitory effects of knockdown of MIAT on proliferation and migration were relieved by miR-148b inhibitor. Additionally, miR-148b regulated proliferation and migration by targeting PAPPA. Mechanically, MIAT functioned as sponge of miR-148b to impact PAPPA expression. MIAT knockdown protected AS mice against lipid metabolic disorders in vivo. SignificanceProliferation and migration were modified by MIAT/miR-148b/PAPPA axis in ox-LDL induced AS cell model, supplying a novel insight into the underlying application of MIAT in the clinical treatment of AS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call