Abstract

This research aimed to investigate the role of the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-129-5p (miR-129-5p)/paired box gene 6 (PAX6) axis in sepsis-induced acute lung injury (ALI). MLE-12 cells and C57BL/6 mice were induced by LPS to establish lung injury in in vitro and in vivo models. Cell viability and apoptosis were measured by cell counting kit-8 assay and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, respectively. Levels of inflammatory cytokines in cell supernatants and bronchoalveolar lavage fluid (BALF) were detected by ELISA. Lung injury was evaluated by lung wet weight-to-dry weight ratio and hematoxylin-eosin staining. MALAT1, PAX6, and zinc finger E-box-binding homeobox 2 (ZEB2) expression was elevated and miR-129-5p expression was reduced in the serum of patients with sepsis-induced ALI, LPS-induced MLE-12 cells, and lung tissues of ALI mice. MALAT1 interference delayed the LPS-induced cell proliferation decrease, apoptosis increase, and inflammatory factor increase. miR-129-5p inhibition could reverse the delaying effect of MALAT1 interference on LPS-induced lung cell injury. PAX6 overexpression (oe) reversed the inhibitory effect of miR-129-5p oe on LPS-induced lung cell injury. Downregulating MALAT1 reduced pulmonary edema, inflammatory cytokine levels, lung injury, and apoptosis in ALI mice. Moreover, miR-129-5p suppression or PAX6 oe reversed the delaying effect of MALAT1 interference on sepsis-induced ALI. MALAT1 aggravates sepsis-induced ALI via the miR-129-5p/PAX6/ZEB2 axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call