Abstract

BackgroundEmerging evidences have verified that long non-coding RNAs (lncRNAs) play important regulatory roles in the pathogenesis and progression of cancers. lncRNAs metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been found to be up-regulated in some human cancers. The main objective of this study was to investigate the expression level and biological function of MALAT1 in gastric cancer (GC).MethodsQuantificational real-time polymerase chain reaction (qRT-PCR) was performed to detect the mRNA levels of MALAT1 in 78 paired gastric carcinoma tissues and adjacent normal tissues, and the associations of MALAT1 expression with the clinicopathological features were analyzed, and the prognosis of gastric carcinoma patients was evaluated. The HMGB2 mRNA and protein expressions were detected by qRT-PCR and western-blot analysis. Luciferase reporter assay was used to determine miR-1297 was a target of MALAT1.ResultsIn this study, we demonstrated MALAT1 was up-regulation in GC tissues compared with adjacent normal tissues and higher MALAT1 expression was correlated with local invasion, lymph node metastasis and TNM stage. Patients with higher MALAT1 expression predicted a shorter survival and poor prognosis. Functionally, we revealed that MALAT1 promoted cells proliferation and invasion in GC. Mechanistically, our results demonstrated that MALAT1 was negatively correlation with miR-1297 and functioned as a molecular sponging miR-1297, antagonizing its ability to suppress HMGB2 expression.ConclusionsTaken together, these results demonstrated that MALAT1/miR-1297/HMGB2 axis acted as critical regulator pathway in GC tumorigenesis and progression, which provided a novel therapeutic target for gastric cancer.

Highlights

  • Emerging evidences have verified that long non-coding RNAs play important regulatory roles in the pathogenesis and progression of cancers. lncRNAs metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been found to be up-regulated in some human cancers

  • The results demonstrated that the expression of MALAT1 in gastric cancer (GC) tissues was up-regulated compared to the paired adjacent non-cancer tissues (Fig. 1a)

  • We demonstrated that patients with higher MALAT1 expression had a shorter survival time in GC patients (Log-rank = 23.94, P < 0.001, Fig. 1b)

Read more

Summary

Introduction

Emerging evidences have verified that long non-coding RNAs (lncRNAs) play important regulatory roles in the pathogenesis and progression of cancers. lncRNAs metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been found to be up-regulated in some human cancers. Emerging evidences have verified that long non-coding RNAs (lncRNAs) play important regulatory roles in the pathogenesis and progression of cancers. LncRNAs metastasis associated lung adenocarcinoma transcript 1 (MALAT1) have been found to be up-regulated in some human cancers. The main objective of this study was to investigate the expression level and biological function of MALAT1 in gastric cancer (GC). Despite a marked decrease incidence, especially in mortality rate in many countries, the absolute number of gastric cancer cases and deaths is still a big burden of the local health program [2]. Long-non-coding RNA (LncRNAs), which are >200 nt in length, play important roles in diverse biological processes, including cell proliferation, cell apoptosis, cell differentiation, cell invasion, and metastasis by regulating gene expression at the epigenetic, transcriptional, and posttranscriptional levels [4]. Alterations in long noncoding RNAs (lncRNAs) are associated with human carcinogenesis including gastric cancer. Long non-coding RNA PVT1 indicated a poor prognosis of

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call