Abstract

To determine whether the long noncoding RNA MALAT1 may be involved in the inflammatory effect of Amadori-glycated albumin (AGA) in retinal microglia via a microRNA-124 (miR-124)-dependent mechanism. Diabetes mellitus was induced by streptozotocin (STZ) injection. The expression of monocyte chemotactic protein-1 (MCP-1) in the retinas of rats was determined using quantitative reverse transcription-PCR (qRT-PCR) analyses and enzyme-linked immunosorbent assay (ELISA). Both qRT-PCR and ELISA were used to detect the levels of MCP-1 mRNA and soluble MCP-1 protein in the primary rat retinal microglia treated with AGA. The regulation of a putative target of miR-124 was validated by luciferase reporter assays. MALAT1 knockdown ameliorated diabetic retinopathy (DR) and inhibited MCP-1 release in the retinas of STZ-induced diabetic rats. The cultured retinal microglial cells treated with AGA-released MCP-1 in a dose- and time-dependent manner. In addition, AGA consistently induced MALAT1 expression in the retinal microglial cells. Next, we demonstrated that the expression of MCP-1 is controlled by miR-124, which binds to the 3'-UTR of MCP-1 in microglial cells. Luciferase reporter assays and RNA-binding protein immunoprecipitation assays showed that MALAT1 targets miR-124. Finally, we demonstrated that MALAT1 acts as a competing endogenous RNA by directly binding to miR-124 to regulate AGA-induced MCP-1 expression in microglial cells. MALAT1-miR-124-MCP-1 signaling pathway may be involved in AGA-induced MCP-1 expression in microglial cells, which may provide a new approach for the treatment of DR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call