Abstract

Chemoresistance and tumor relapse are the leading cause of deaths in bladder cancer patients. Bladder cancer stem cells (BCSCs) have been reported to contribute to these pathologic properties. However, the molecular mechanisms underlying their self-renewal and chemoresistance remain largely unknown. In the current study, a novel lncRNA termed Low expressed in Bladder Cancer Stem cells (lnc-LBCS) has been identified and explored in BCSCs. Firstly, we establish BCSCs model and explore the BCSCs-associated lncRNAs by transcriptome microarray. The expression and clinical features of lnc-LBCS are analyzed in three independent large-scale cohorts. The functional role and mechanism of lnc-LBCS are further investigated by gain- and loss-of-function assays in vitro and in vivo. Lnc-LBCS is significantly downregulated in BCSCs and cancer tissues, and correlates with tumor grade, chemotherapy response, and prognosis. Moreover, lnc-LBCS markedly inhibits self-renewal, chemoresistance, and tumor initiation of BCSCs both in vitro and in vivo. Mechanistically, lnc-LBCS directly binds to heterogeneous nuclear ribonucleoprotein K (hnRNPK) and enhancer of zeste homolog 2 (EZH2), and serves as a scaffold to induce the formation of this complex to repress SRY-box 2 (SOX2) transcription via mediating histone H3 lysine 27 tri-methylation. SOX2 is essential for self-renewal and chemoresistance of BCSCs, and correlates with the clinical severity and prognosis of bladder cancer patients. As a novel regulator, lnc-LBCS plays an important tumor-suppressor role in BCSCs' self-renewal and chemoresistance, contributing to weak tumorigenesis and enhanced chemosensitivity. The lnc-LBCS-hnRNPK-EZH2-SOX2 regulatory axis may represent a therapeutic target for clinical intervention in chemoresistant bladder cancer.

Highlights

  • With a high rate of recurrence and tumor heterogeneity, bladder cancer is one of the most common and lethal malignancies worldwide [1, 2]

  • Lnc-LBCS directly binds to heterogeneous nuclear ribonucleoprotein K and enhancer of zeste homolog 2 (EZH2), and serves as a scaffold to induce the formation of this complex to repress SRY-box 2 (SOX2) transcription via mediating histone H3 lysine 27 tri-methylation

  • The lnc-LBCS–heterogeneous nuclear ribonucleoprotein K (hnRNPK)–EZH2– SOX2 regulatory axis may represent a therapeutic target for clinical intervention in chemoresistant bladder cancer

Read more

Summary

Introduction

With a high rate of recurrence and tumor heterogeneity, bladder cancer is one of the most common and lethal malignancies worldwide [1, 2]. Chemotherapy is a significant component of current first-line treatment for bladder cancer. It reduces tumor masses in most patients initially; a majority of patients progressively become unresponsive after multiple treatment cycles, and suffer tumor relapse [3, 4]. Recent studies demonstrate that the main cause of chemoresistance is existence of cancer stem cells (CSCs), which. Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call