Abstract

BackgroundIt have been proven that long non-coding RNAs (lncRNAs) serve as regulators in carcinogenesis. Interleukin enhancer binding factor 3 antisense RNA 1 (ILF3-AS1) has been illuminated as a prognostic factor in some cancers. Nevertheless, its expression pattern and possible functions in papillary thyroid carcinoma (PTC) have not been studied.MethodsThe expression of ILF3-AS1 was measured by RT-qPCR and ISH. Colony formation assay and EdU assay were used to probe cell proliferation. TUNEL assay was used for analysis of cell apoptosis. Immunofluorescence and western blot were conducted to evaluate the expression change of E-cadherin and N-cadherin. The RNA interaction was demonstrated by mechanism experiments, including pull down assay and dual luciferase reporter assay.ResultsILF3-AS1 expression was evidently upregulated in PTC cell lines. ILF3-AS1 knockdown restrained the proliferation, migration and invasion of PTC cells. Mechanical investigation revealed that miR-4306 could interact with ILF3-AS1. PLAGL2 was a downstream target of miR-4306. The effects of ILF3-AS1 knockdown on the cellular processes were abrogated by miR-4306 downregulation or pleiomorphic adenoma gene-like 2 (PLAGL2) overexpression.ConclusionILF3-AS1 plays tumor-promoting role in PTC via targeting miR-4306/PLAGL2 axis.

Highlights

  • It have been proven that long non-coding RNAs serve as regulators in carcinogenesis

  • Human thyroid cancer cell lines (IHH-4 and 8505C) were procured from Japanese Collection of Research Bioresources (JCRB) Cell Bank (Osaka, Japan), SW1736 cell line was procured from Cell Lines Service GmbH (CLS; Eppelheim, Baden Wurttemberg, Germany), TPC-1 cell line was procured from TOKU-E Company (Tokyo, Japan), and CGTH-W-3 cell line was procured from ATCC (Manassas, VA, USA)

  • ILF3‐AS1 is expressed at a high level in papillary thyroid carcinoma (PTC) cell lines To explore whether ILF3-AS1 involved in the progression of PTC, we firstly checked its expression in five PTC cell lines (IHH-4, SW1736, TPC-1, CGTH-W-3, 8505C) and one normal thyroid cell line (Nthy-ori3-1)

Read more

Summary

Introduction

It have been proven that long non-coding RNAs (lncRNAs) serve as regulators in carcinogenesis. Its expression pattern and possible functions in papillary thyroid carcinoma (PTC) have not been studied. The majority of human genome can be transcribed into RNA. Only about 2% of human genome exhibit protein-coding capacity [3, 4]. Long non-coding RNAs (LncRNAs) refer to a class of transcripts with more than 200 bp, but their lack of open reading frames leads to the inability to encode proteins [5]. LncRNAs have been reported in different human diseases due to their regulatory potentials in biological functions [6]. More and more lncRNAs have been found to regulate PTC progression via acting as miRNA sponge or competing endogenous RNA (ceRNA).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.