Abstract

Hepatocellular carcinoma (HCC) is among the leading causes of cancer-related death. Despite the advances in diagnosis and management of HCC, the biology of this tumor remains poorly understood. Recent evidence highlighted long noncoding RNAs (lncRNAs) as crucial determinants of HCC development. In this study we report the lncRNA HOXA transcript at the distal tip (HOTTIP) as significantly up-regulated in HCC specimens. The HOTTIP gene is located in physical contiguity with HOXA13 and directly controls the HOXA locus gene expression by way of interaction with the WDR5/MLL complex. HOX genes encode transcription factors regulating embryonic development and cell fate. We previously described HOX genes deregulation to be involved in hepatocarcinogenesis. Indeed, we observed the marked up-regulation of HOXA13 in HCC. Here, by correlating clinicopathological and expression data, we demonstrate that the levels of HOTTIP and HOXA13 are associated with HCC patients' clinical progression and predict disease outcome. In contrast to the majority of similar studies, our data were obtained from snap-frozen needle HCC biopsies (n=52) matched with their nonneoplastic counterparts collected from patients who had not yet received any HCC-tailored therapeutic treatments at the time of biopsy. In addition, taking advantage of gain and loss of function experiments in liver cancer-derived cell lines (HuH-6 and HuH-7), we uncover a novel bidirectional regulatory loop between HOTTIP/HOXA13. Our study highlights the key role of HOTTIP and HOXA13 in HCC development by associating their expression with metastasis and survival in HCC patients, provides novel insights on the function of lncRNA-driven hepatocarcinogenesis, and paves the way for further investigation about the possible role of HOTTIP as a predictive biomarker of HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.