Abstract
β-Thalassemia is an autosomal recessive genetic disease caused by defects in the production of adult hemoglobin (HbA, α2β2), which leads to an imbalance between α- and non-α-globin chains. Reactivation of γ-globin expression is an effective strategy to treat β-thalassemia patients. Previously, it was demonstrated that hemoglobin subunit beta pseudogene 1 (HBBP1) is associated with elevated fetal hemoglobin (HbF, α2γ2) in β-thalassemia patients. However, the mechanism underlying HBBP1-mediated HbF production is unknown. In this study, using bioinformatics analysis, we found that HBBP1 is involved in γ-globin production, and then preliminarily confirmed this finding in K562 cells. When HBBP1 was overexpressed, γ-globin expression was increased at the transcript and protein levels in HUDEP-2 cells. Next, we found that ETS transcription factor ELK1 (ELK1) binds to the HBBP1 proximal promoter and significantly promotes its activity. Moreover, the synthesis of γ-globin was enhanced when ELK1 was overexpressed in HUDEP-2 cells. Surprisingly, ELK1 also directly bound to and activated the γ-globin proximal promoter. Furthermore, we found that HBBP1 and ELK1 can interact with each other in HUDEP-2 cells. Collectively, these findings suggest that HBBP1 can induce γ-globin by enhancing ELK1 expression, providing some clues for γ-globin reactivation in β-thalassemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.