Abstract
Esophageal cancer (EC) is a common malignant tumor of the digestive tract, the treatment of which involves surgery combined with radiotherapy and chemotherapy, as well as other comprehensive types of treatment. The pathogenesis of EC remains unclear, which hinders the development of clinical therapy and the identification of molecular targets for this disease. Long non-coding RNAs (lncRNAs) have been shown to be associated with the malignant biological behavior of EC, but the specific molecular mechanisms underlying the carcinogenesis of EC are not fully understood. Reverse transcription-quantitative PCR (RT-qPCR) was applied to measure the lncRNA HAGLR opposite strand lncRNA (HAGLROS) levels in EC cell lines and tissues. Cell Counting Kit-8 (CCK-8) detection, scratch test, and Transwell assay were performed to determine the proliferation, migration and invasion of EC cell. The interaction between HAGLROS, microRNA (miR)-206, and notch receptor 3 (NOTCH3) was confirmed by RNA immunoprecipitation and dual luciferase reporter gene assays. HAGLROS is upregulated in esophageal squamous cell carcinoma (ESCC) tissues and predicts poor prognosis. Silent HAGLROS is negatively associated with malignant behavior in EC cells. Low expression of HAGLROS can induce decreased invasive and migratory abilities in EC cells. Downregulated HAGLROS significantly inhibits the proliferation of EC cells and accelerates apoptosis. HAGLROS promotes EC cell tumorigenesis in vivo. HAGLROS participates in the HAGLROS/miR-206/NOTCH3 regulatory axis in EC cells. HAGLROS may play a role in the progression of EC by modulating the miR-206/NOTCH3 signaling axis, and may be a novel target for the diagnosis and treatment of EC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.