Abstract
Overexpressed long noncoding RNA FTX is associated with low survival rate of epithelial ovarian cancer (EOC) patients, and enhances tumor infiltration. Thus, we aim to illuminate the undefined underlying mechanisms. Real-time quantitative polymerase chain reaction was applied to detect the expressions of FTX, miR-7515, miR-342-3p, miR-940, miR-150-5p, miR-205-5p and tumor protein D52 (TPD52). Cell counting kit-8 and transwell assays were utilized to explore the cell viability, migration or invasion of EOC cells. Western blot was conducted to measure the expressions of E-cadherin, N-cadherin, Met, phosphorylated (p)-Met, Akt, p-Akt, mTOR and p-mTOR. LncBase and TargetScan predicted the binding of miR-7515 with FTX, and the binding of TPD52 with miR-7515, respectively. The two bindings were further validated by dual luciferase reporter assay. As a result, FTX sponged miR-7515 and miR-7515 targeted to TPD52. FTX was overexpressed in four EOC cell lines. Overexpressed FTX enhanced the cell viability, migration or invasion of EOC cells, elevated N-cadherin and TPD52 expressions, phosphorylated Met/Akt/mTOR, and inhibited E-cadherin expression. All these influences were subsequently reversed by miR-7515 mimic. Collectively, FTX regulates miR-7515/TPD52 to facilitate the migration, invasion or epithelial-mesenchymal transition of EOC through activating Met/Akt/mTOR signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.