Abstract

Long non-coding RNA (lncRNA) has been testified to influence the initiation and evolution of sundry carcinomas. Recently, lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) has been found to display vital regulating functions in various cancers. qRT-PCR was used to verify the dysregulation of FOXD2-AS1 expression in CCA cells and tissues, and the correlation of FOXD2-AS1 expression with clinicopathological characteristics was investigated. The viability, migration, and invasion of CCA cells were verified through CCK-8 assay, colony formation experiment, wound healing assay, and transwell assay. The regulatory networks of FOXD2-AS1 were analyzed by Bioinformatic prediction and dual-luciferase reporter assay. We discovered that FOXD2-AS1 was significantly upregulated in CCA and its up-regulation was closely correlated with terminal TNM stage, lymph node metastasis and poor survival in the current research. In addition, it was revealed that FOXD2-AS1 was an independent prognostic factor. Functional tests uncovered that the cell viability, migration, and invasion could be restrained through downregulating the expression of FOXD2-AS1, while FOXD2-AS1 overexpression could facilitate the cell viability, migration, and invasion. Mechanistically, FOXD2-AS1 was founded to interact directly with miR-760 and the oncogene E2F3 was the downstream target of miR-760 through bioinformatic prediction and dual-luciferase reporter assays. Finally, we testified that FOXD2-AS1 could competitively sponge miR-760 and further upregulated the E2F3 expression to play a vital part in cholangiocarcinoma. This research revealed that lncRNA FOXD2-AS1 could enhance CCA malignant progression through regulating the miR-760/E2F3 axis and was expected to be a prognostic biomarker and therapeutic target for cholangiocarcinoma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call