Abstract

Background The specific functional roles of long noncoding RNAs (lncRNAs) as ceRNAs in colon cancer and their potential implications for colon cancer prognosis remain unclear. In the present study, a genome-wide analysis was performed to investigate the potential lncRNA-mediated ceRNA interplay in colon cancer based on the “ceRNA hypothesis.” The prognostic value of the lncRNAs was evaluated. Methods A dysregulated lncRNA-associated ceRNA network was constructed based on the miRNA, lncRNA, and mRNA expression profiles in combination with the miRNA regulatory network by using an integrative computational method. Molecular biological techniques, including qPCR and gene knockdown techniques, were used to verify candidate targets in colon cancer. Survival analysis was performed to identify the candidate lncRNAs with prognostic value. Results Our network analysis uncovered several novel lncRNAs as functional ceRNAs through crosstalk with miRNAs. The QRT-PCR assays of patient tissues as well as gene knockdown colon cancer cells confirmed the expression of top lncRNAs and their correlation with target genes in the ceRNA network. Functional enrichment analysis predicted that differentially expressed lncRNAs might participate in broad biological functions associated with tumor progression. Moreover, these lncRNAs may be involved in a range of cellular pathways, including the apoptosis, PI3K-AKT, and EGFR signaling pathways. The survival analysis showed that the expression level of several lncRNAs in the network was correlated with the prognosis of patients with colon cancer. Conclusions This study uncovered a dysregulated lncRNA-associated ceRNA network in colon cancer. The function of the identified lncRNAs in colon cancer was preliminarily explored, and their potential prognostic value was evaluated. Our study demonstrated that lncRNAs could potentially serve as important regulators in the development and progression of colon cancer. Candidate prognostic lncRNA biomarkers in colon cancer were identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.