Abstract

ObjectivesAPOC1 has been reported to promote tumor progression. Nevertheless, its impact on cell proliferation and glycolysis in gastric cancer (GC) remains to be probed. Hence, this study explored the related impacts and mechanisms. MethodsDLEU1, SMYD2, and APOC1 expression was detected in GC cells. Afterward, ectopic expression and knockdown experiments were conducted in GC cells, followed by measurement of cell proliferation, glucose uptake capability, lactic acid production, ATP content, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), and GLUT1, HK2, and LDHA expression. In addition, interactions between DLEU1 and SMYD2 were analyzed with RIP and RNA pull down assays, and the binding of SMYD2 to APOC1 promoter and the methylation modification of SMYD2 in H3K4me3 were assessed with a ChIP assay. The ectopic tumor formation experiment in nude mice was conducted for in vivo validation. ResultsDLEU1, SMYD2, and APOC1 were highly expressed in GC cells. The downregulation of DLEU1 or APOC1 inhibited glucose uptake capability, lactic acid production, ECAR, the expression of GLUT1, HK2, and LDHA, ATP contents, and proliferation but augmented OCR in GC cells, which was also verified in animal experiments. Mechanistically, DLEU1 interacted with SMYD2 and recruited SMYD2 to APOC1 promoter to promote H3K4me3 modification, thus facilitating APOC1 expression. Furthermore, the effects of DLEU1 silencing on GC cell proliferation and glycolysis were negated by overexpressing SMYD2 or APOC1. ConclusionLncRNA DLEU1 recruited SMYD2 to upregulate APOC1 expression, thus boosting GC cell proliferation and glycolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call