Abstract

Long noncoding RNA CPS1-IT1 is recently recognized as a tumor suppressor in several cancers. Here, we investigate the role of CPS1-IT1 in human melanoma. Presently, our study reveals the low expression of CPS1-IT1 in human melanoma tissues and cell lines, which is significantly associated with metastasis and tumor stage. Besides, the potential of CPS1-IT1 as a prognosis-predictor is strongly indicated. Functionally, CPS1-IT1 overexpression inhibits cell migration, invasion, epithelial-mesenchymal transition, and angiogenesis in melanoma cells. CYR61, an angiogenic factor that participates in tumor metastasis as well as a recognized oncogene in melanoma, is shown to be confined under CPS1-IT1 overexpression in melanoma cells. Furthermore, enforced expression of Cyr61 in CPS1-IT1-silenced melanoma cells dramatically normalized the protein level of Cyr61 and that of its downstream targets vascular endothelial growth factor and matrix metalloproteinase-9, as well as the repressive effect of CPS1-IT1 overexpression on melanoma cell metastasis. BRG1, a core component of SWI/SNF complex, is implied to interact with both CPS1-IT1 and Cyr61 in melanoma cells. Moreover, CPS1-IT1 negatively regulates Cyr61 expression by blocking the binding of BRG1 to Cyr61 promoter. Jointly, CPS1-IT1 controls melanoma metastasis through impairing Cyr61 expression via competitively binding with BRG1, uncovering a novel potential therapeutic and prognostic biomarker for patients with melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.