Abstract

Melanoma is the most malignant and aggressive form of skin carcinoma originating in the pigment-producing melanocytes. In this study, to further investigate the molecular mechanisms of the development and progression of melanoma, we explored the impacts of long non-coding RNA (lncRNA) CASC2 on melanoma cell functions. Microarray analysis was carried out to identify the expression of lncRNA CASC2 in melanoma cells. MiR-181a was predicted as a sponging target of CASC2 by miRcode, while the 3'-UTR of Plexin C1 (PLXNC1) was a potential target of miR-181a according to the TargetScan database. The correlation among CASC2, miR-181a, and PLXNC1 was verified by dual luciferase reporter assay and qRT-PCR. After manipulation of CASC2, miR-181a and PLXNC1 expression with transfection in A375 and M14 cells, cell viability, apoptosis, and invasive ability were evaluated using CCK-8, flow cytometry and Transwell assays, respectively. A low expression of CASC2 was detected in melanoma tissues and cells. Dual luciferase reporting assay confirmed that miR-181a targeted the 3'-UTR of PLXNC1. Furthermore, CASC2 could efficiently sponge miR-181a, thereby facilitating the expression of PLXNC1. Up-regulation of CASC2 suppressed the cell proliferation and invasion, but induced the apoptosis of melanoma cells. Our results demonstrated that lncRNA CASC2 can promote PLXNC1 expression by sponging miR-181a, thereby inhibiting the proliferation and invasion of melanoma cells, indicating that lncRNA CASC2 functions via the miR-181a/PLXNC1 axis in melanoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.