Abstract

BackgroundMesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro.MethodsMSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O2). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O2) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined.ResultsCompared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection.ConclusionlncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.

Highlights

  • Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation

  • LncRNA-Bvht transfection efficiency ZsGreen was expressed after MSCs were transduced with the pLVX-IRES-ZsGreen1 vector

  • The mRNA level was Expressions of cardiac-specific transcription factors and epithelialmesenchymal transition (EMT)-associated genes in different cell groups after the induction of MSCs differentiation The expressions of cardiac-specific transcription factors including mesoderm posterior1 (Mesp1), Nkx2.5, Gata4, Gata6, and Isl1 were examined at different time points after the induction of cardiogenic differentiation

Read more

Summary

Introduction

Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. We investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. Induction of cardiac regeneration to replace the lost cardiomyocytes in the injured heart represents a promising therapeutic approach in this context [2]. Stem cell therapy has emerged as a novel strategy for the treatment of ischemic heart disease during the past decade. Various stem cell types have been used for the repair of the damaged heart [2,3,4]. Noteworthy benefits are revealed in the regeneration of cardiomocytes following the transplantation of the precursor cells [2,3,4]. The underlying molecular mechanisms that lead to cardiomyocyte regeneration after cell therapy have not been fully elucidated

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.