Abstract

Background: Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs. Recent investigations have demonstrated overlaps of these histotypes with the human counterparts, including clinical presentation, biologic behavior, tumor genetics, and treatment response. The molecular mechanisms that underlie canine BCL are still unknown and new studies to improve diagnosis, therapy, and the utilization of canine species as spontaneous animal tumor models are undeniably needed. Recent work using human DLBCL transcriptomes has suggested that long non-coding RNAs (lncRNAs) play a key role in lymphoma pathogenesis and pinpointed a restricted number of lncRNAs as potential targets for further studies. Results: To expand the knowledge of non-coding molecules involved in canine BCL, we used transcriptomes obtained from a cohort of 62 dogs with newly-diagnosed multicentric DLBCL, MZL and FL that had undergone complete staging work-up and were treated with chemotherapy or chemo-immunotherapy. We developed a customized R pipeline performing a transcriptome assembly by multiple algorithms to uncover novel lncRNAs, and delineate genome-wide expression of unannotated and annotated lncRNAs. Our pipeline also included a new package for high performance system biology analysis, which detects high-scoring network biological neighborhoods to identify functional modules. Moreover, our customized pipeline quantified the expression of novel and annotated lncRNAs, allowing us to subtype DLBCLs into two main groups. The DLBCL subtypes showed statistically different survivals, indicating the potential use of lncRNAs as prognostic biomarkers in future studies. Conclusions: In this manuscript, we describe the methodology used to identify lncRNAs that differentiate B-cell lymphoma subtypes and we interpreted the biological and clinical values of the results. We inferred the potential functions of lncRNAs to obtain a comprehensive and integrative insight that highlights their impact in this neoplasm.

Highlights

  • Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs

  • In order to get an exhaustive catalog of canine long non-coding RNAs (lncRNAs) we first performed a systematic transcript discovery using a dataset comprising lymphomas (n = 62) and controls (n = 13)

  • When we performed differential expression (DE) analysis separating tumors by histotypes, the number of lncRNAs differentially expressed in DLBCLs was markedly higher compared with FL and MZL

Read more

Summary

Introduction

Diffuse large B-cell lymphoma (DLBCL), marginal zone lymphoma (MZL) and follicular lymphoma (FL) are the most common B-cell lymphomas (BCL) in dogs. Results: To expand the knowledge of non-coding molecules involved in canine BCL, we used transcriptomes obtained from a cohort of 62 dogs with newly-diagnosed multicentric DLBCL, MZL and FL that had undergone complete staging work-up and were treated with chemotherapy or chemo-immunotherapy. Diffuse large B cell lymphoma (DLBCL) is the most frequent in humans and dogs alike. In 2013, a canine DNA-microarray platform was used for the first time by Richards, and colleagues, to study DLBCL and MZL [5] They observed a generalized NF-kB pathway activation which mirrored human activated B cell-like DLBCL (ABC-DLBCL). A high-throughput sequencing approach (RNA-seq) successfully characterized canine DLBCL [6]; but analysis of the coding transcriptome was not able to clearly discriminate between DLBCL and MZL [7]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call