Abstract

ObjectiveTemporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease in jaw joint, accompanied by articular cartilage destruction. Differentiation of stem cells to cartilage has important therapeutic implications in TMJ cartilage repair. Previous studies revealed that lncRNA XIST participated in various biological processes. However, the effect of XIST on chondrogenic differentiation of synovium-derived mesenchymal stem cells (SMSCs) remains unclear. Our study aimed to investigate the function of XIST in chondrogenic differentiation of human SMSCs from TMJ. MethodsAlcian blue staining was performed to determine proteoglycan in SMSCs. qPCR, western blotting and immunofluorescence assays were allowed to assess sex determining region Y-box 9 (SOX9), Collagen type II alpha 1 chain (COL2A1) and Aggrecan (ACAN) expression. The direct interaction between miR-27b-3p and XIST or ADAMTS-5 was confirmed by dual luciferase reporter assay or RNA immunoprecipitation (RIP) assay. ResultsXIST was remarkably down-regulated in chondrogenic differentiation of SMSCs. Functional analysis demonstrated that XIST silencing promoted chondrogenic differentiation of SMSCs. Dual luciferase reporter and RIP assays identified that XIST acted as a sponge for miR-27b-3p. Moreover, XIST regulated ADAMTS-5 expression by directly binding miR-27b-3p. More importantly, miR-27b-3p/ADAMTS-5 rescued the effects of XIST on chondrogenic differentiation of SMSCs. ConclusionThe results suggest that XIST modulates SMSCs chondrogenic differentiation via the miR-27b-3p/ADAMTS-5 axis, which provides new targets for TMJOA treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call