Abstract

Long non-coding RNAs (lncRNAs) have been elucidated to play vital roles in the phenotype of trophoblast cells. Nevertheless, the effect of SNHG1 has not been investigated on trophoblast cells in recurrent spontaneous abortion (RSA). We aim to investigate the effect of SNHG1 on the phenotype of trophoblast cells during RSA. The RSA mice were established by mating female CBA/J mice with male DBA/2 mice. Microarray analysis was applied in RSA mice, and SNHG1 was identified as a significantly downregulated lncRNA. SNHG1 improved pregnancy outcome and reduced embryo resorption in RSA mice. Trophoblast cell proliferation, apoptosis, migration, and invasion were investigated by CCK8, EdU, TUNEL, wound healing, and Transwell assays. SNHG1 promoted proliferation, migration, and invasion of trophoblast cells, and reduced apoptosis. Mechanistically, SNHG1 bound to miR-183-5p in trophoblast cells. Moreover, miR-183-5p directly targeted ZEB2. Rescue experiment showed that ZEB2 silencing reversed the ameliorative effect of SNHG1 on pregnancy outcome and the promotion of trophoblast activity in RSA mice by impaired the Wnt/β-catenin pathway. In conclusion, we found that SNHG1 plays a critical role in the progression of RSA via miR-183-5p/ZEB2 and Wnt/β-catenin signaling. It has potential to be a therapeutic marker of RSA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call