Abstract
The potential function of NEAT1 in the progression of Gestational diabetes mellitus (GDM) and the molecular mechanisms are explored. NEAT1 levels in multiple types of cell lines and placental tissues collected from healthy, GDM and preeclampsia pregnancies were detected by quantitative real-time polymerase chain reaction (qRT-PCR). After intervening NEAT1 level in HTR-8/SVneo cells, proliferative, migratory and apoptotic potentials were examined by cell counting kit-8 (CCK-8), 5-Ethynyl-2′-deoxyuridine (EdU), transwell assay and flow cytometry. The regulatory effect of NEAT1 on the transcriptional activity of NSD1 was predicted by bioinformatic analysis and further confirmed by dual-luciferase reporter assay. In addition, histone modifications of NEAT1 on NSD1 transcription were examined by chromatin immunoprecipitation (ChIP). NEAT1 was upregulated in placental tissues collected from GDM patients. Overexpression of NEAT1 stimulated proliferative and migratory potentials, but inhibited apoptosis in HTR-8/SVneo cells. Knockdown of NEAT1 had the opposite outcomes. NEAT1 was able to regulate the transcriptional activity of NSD1 through histone modifications on H3K27Me3 and H3K27Cro. NEAT1 is upregulated in GDM cases, which triggers proliferative and migratory potentials in trophoblast cells mainly through regulating transcriptional activity of NSD1 via histone modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.