Abstract

Vitiligo is a common skin depigmentation disorder characterized by the patchy loss of skin color. Nowadays, it is recognized as being correlated with multiple genetic factors as well as the psychological conditions of individuals. Long noncoding RNAs have been reported to underlie the pathogenesis of vitiligo; however, the role of long noncoding RNAs in the stress-related depigmentation process remains largely unknown. In this study, the inhibition of melanocyte function was observed in C57BL/6J mice modeled through chronic restraint stress. Furthermore, downregulation of the expression of the long noncoding RNAs Mir17hg was identified using RNA sequencing. The regulatory role of Mir17hg in melanogenesis was also investigated in melanocytes and zebrafish embryos through overexpression or knockdown. Finally, TGFβ receptor 2 was shown to be a downstream target in Mir17hg-mediated melanogenesis regulation, in which the classical TGFβ/SMAD signaling cascade and the PI3K/AKT/mTOR signaling cascade play important roles. In conclusion, our results revealed an important regulatory role of Mir17hg in melanogenesis through inhibition of TGFβR2, which can provide a potential therapeutic target for treating skin depigmentation disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.