Abstract

Colon cancer is a common cancer that is a threat to human health. Some long non-coding RNAs (lncRNAs) have been observed to exert roles in colon cancer. Here, the current study is aimed to explore the potential mechanism of lncRNA MBNL1 antisense RNA 1 (MBNL1-AS1) in progression of colon cancer and the associated mechanisms. Microarray analysis was performed to screen differentially expressed lncRNA and genes associated with colon cancer and its potential mechanism. The functional role of MBNL1-AS1 in colon cancer was analyzed, followed identification of the interaction among MBNL1-AS1, microRNA-412-3p (miR-412-3p), and MYL9. Subsequently, CSC viability, migration, invasion, and apoptosis were detected though a series of in vitro experiments. At last, in vivo experiments were performed to assess tumor formation of colon CSCs. MBNL1-AS1 and MYL9 were poorly expressed in colon cancer. MBNL1-AS1 could competitively bind to miR-412-3p so as to promote MYL9 expression. Enhancement of MBNL1-AS1 or inhibition of miR-412-3p was shown to decrease CSC proliferation, migration, and invasion but promote apoptosis. Moreover, MBNL1-AS1 reversed the CSC-like properties as well as xenograft tumor formation in vivo induced by miR-412-3p. Collectively, the present study suggests an inhibitory role of MBNL1-AS1 in colon cancer by upregulating miR-412-3p-targeted MYL9. Thus, this study provides an enhanced understanding of MBNL1-AS1 along with miR-412-3p and MYL9 as therapeutic targets for colon cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call