Abstract

Background/Aims: Dexamethasone (Dex) induces injuries to human osteoblasts. In this study, we tested the potential role of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (Lnc-MALAT1) in this process. Materials: Two established human osteoblastic cell lines (OB-6 and hFOB1.19) and primary human osteoblasts were treated with Dex. Lnc-MALAT1 expression was analyzed by quantitative real-time polymerase chain reaction assay. Cell viability, apoptosis, and death were tested by the MTT assay, histone-DNA assay, and trypan blue staining assay, respectively. AMP-activated protein kinase (AMPK) signaling was evaluated by western blotting and AMPK activity assay. Results: Lnc-MALAT1 expression was downregulated by Dex treatment in the established osteoblastic cell lines (OB-6 and hFOB1.19) and primary human osteoblasts. The level of Lnc-MALAT1 was decreased in the necrotic femoral head tissues of Dex-administered patients. In osteoblastic cells and primary human osteoblasts, forced overexpression of Lnc-MALAT1 using a lentiviral vector (LV-MALAT1) inhibited Dex-induced cell viability reduction, cell death, and apoptosis. Conversely, transfection with Lnc-MALAT1 small interfering RNA aggravated Dex-induced cytotoxicity. Transfection with LV-MALAT1 downregulated Ppm1e (protein phosphatase, Mg<sup>2+/</sup> Mn<sup>2+</sup>-dependent 1e) expression to activate AMPK signaling. Treatment of osteoblasts with AMPKα1 short hairpin RNA or dominant negative mutation (T172A) abolished LV-MALAT1-induced protection against Dex-induced cytotoxicity. Furthermore, LV-MALAT1 induced an increase in nicotinamide adenine dinucleotide phosphate activity and activation of Nrf2 signaling. Dex-induced reactive oxygen species production was significantly attenuated by LV-MALAT1 transfection in osteoblastic cells and primary osteoblasts. Conclusion: Lnc-MALAT1 protects human osteoblasts from Dex-induced injuries, possibly via activation of Ppm1e-AMPK signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call