Abstract

Ferroptosis is a new form of regulated cell death caused by the iron-dependent peroxidation of phospholipids and is related to cell metabolism, redox homeostasis and various signalling pathways related to cancer. The long noncoding RNA (lncRNA) KB-1460A1.5 acts as a tumour suppressor gene to regulate tumour growth in gliomas, but its molecular network regulatory mechanism is still unclear. In this study, we found that KB-1460A1.5 can induce ferroptosis in glioma and enhance sensitivity to RSL3, a ferroptosis inducer. TMT proteomics and nontargeted metabolomics suggest that KB-1460A1.5 affects polyunsaturated fatty acid metabolic processes. GC‒MS-based medium- and long-chain fatty acid-targeted metabolomics confirmed that upregulation of KB-1460A1.5 decreased the levels of monounsaturated fatty acids (MUFAs), oleic acid (OA) and palmitoleic acid (PO) in glioma cells. The addition of OA and PO restored KB-1460A1.5-induced cellular ferroptosis. Molecularly, KB-1460A1.5 inhibited the mTOR signalling pathway to suppress the expression of downstream sterol regulatory element binding protein 1 (SREBP-1), thereby attenuating the stearoyl-CoA desaturase-1 (SCD1)-mediated desaturation of polyunsaturated fatty acids. Finally, an animal model of subcutaneous glioma confirmed that KB-1460A1.5 could inhibit tumour progression, SREBP1/SCD1 expression, and ferroptosis. In conclusion, increasing the expression level of KB-1460A1.5 in glioma can promote the induction of oxidative stress and ferroptosis in cancer cells through SREBP1/SCD1-mediated adipogenesis, demonstrating therapeutic potential in preclinical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call