Abstract
PurposeLong non-coding RNAs (lncRNAs) play important roles in the malignant behavior of cancer. HOTAIR, a well-studied lncRNA, contributes to breast cancer development, and overexpression of HOTAIR predicts a poor prognosis. However, the regulatory role of HOTAIR in the cancer stem-like cell (CSC) subpopulation remains largely unknown. Our goal was to determine the regulatory functions of HOTAIR in the processes of self-renewal capacity, tumor formation and proliferation of CSCs derived from breast cancer.MethodsWe first enriched and incubated the CSC population derived from breast cancer cell line MCF7 (CSC-MCF7) or MDA-MB-231 (MB231, CSC-MB231). Self-renewal capacity and tumor formation were assessed in vitro and in vivo to determine the stemness of CSCs. We assessed the impact on ectopically upregulated or downregulated expression of HOTAIR in CSCs by soft agar, self-renewal capacity and CCK-8 assays. The functional domain of HOTAIR was determined by truncation. RT-qPCR and semiquantitative Western blotting were performed to detect the expression levels of genes of interest. Chromatin IP (ChIP) was employed to detect the transcriptional regulatory activity of p53 on its target gene.ResultsAfter the identification of CSC properties, RT-qPCR analysis revealed that HOTAIR, but not other cancer-associated lncRNAs, is highly upregulated in both CSC-MCF7 and CSC-MB231 populations compared with MCF7 and MB231 populations. By modulating the level of HOTAIR expression, we showed that HOTAIR tightly regulates the proliferation, colony formation, migration and self-renewal capacity of CSCs. Moreover, full-length HOTAIR transcriptionally inhibits miR-34a specifically, leading to upregulation of Sox2, which is targeted by miR-34a. Ectopic introduction of miR-34a mimics reverses the effects of HOTAIR on the physiological processes of CSCs, indicating that HOTAIR affects these processes, including self-renewal capacity; these effects are dependent on the regulation of Sox2 via miR-34a. Interestingly, tight transcriptional regulation of p53 by HOTAIR was found; accordingly, p21 is indirectly regulated by HOTAIR, resulting in cell cycle entry.ConclusionThese results suggest that HOTAIR is a key regulator of proliferation, colony formation, invasion and self-renewal capacity in breast CSCs, which occurs in part through regulation of Sox2 and p53.
Highlights
LncRNAs, which are typically non-protein coding transcripts longer than 200 nucleotides, can epigenetically interact with transcription factors, transcriptional activators or repressors, and different subunits of complexes, including RNA polymerase (RNAP) II and even duplex DNA, to function as transcriptional or post-transcriptional regulators [1]
After the identification of cancer stem-like cell (CSC) properties, RT-qPCR analysis revealed that HOTAIR, but not other cancer-associated Long non-coding RNAs (lncRNAs), is highly upregulated in both CSC-MCF7 and CSCMB231 populations compared with MCF7 and MB231 populations
Ectopic introduction of miR-34a mimics reverses the effects of HOTAIR on the physiological processes of CSCs, indicating that HOTAIR affects these processes, including self-renewal capacity; these effects are dependent on the regulation of Sox2 via miR-34a
Summary
LncRNAs, which are typically non-protein coding transcripts longer than 200 nucleotides, can epigenetically interact with transcription factors, transcriptional activators or repressors, and different subunits of complexes, including RNA polymerase (RNAP) II and even duplex DNA, to function as transcriptional or post-transcriptional regulators [1]. As a result of their regulatory roles, lncRNAs strongly influence the malignant behavior of cancer, such as tumorigenesis, proliferation, apoptosis, chemoresistance and invasiveness [1]. A study of its regulatory mechanism in breast cancer revealed that HOTAIR promotes breast cancer metastasis, partly by interacting directly with polycomb repressive complex-2 (PRC2) through its 5’ domain to induce genome-wide retargeting of PRC2 to hundreds of genes involved in metastasis. HOTAIR plays key roles in the epigenetic regulation of breast cancer malignancy
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.