Abstract

Stem cell-based therapies have been proposed as a potential treatment for neural regeneration following closed head injury. We previously reported that induced neural stem cells exert beneficial effects on neural regeneration via cell replacement. However, the neural regeneration efficiency of induced neural stem cells remains limited. In this study, we explored differentially expressed genes and long non-coding RNAs to clarify the mechanism underlying the neurogenesis of induced neural stem cells. We found that H19 was the most downregulated neurogenesis-associated lncRNA in induced neural stem cells compared with induced pluripotent stem cells. Additionally, we demonstrated that H19 levels in induced neural stem cells were markedly lower than those in induced pluripotent stem cells and were substantially higher than those in induced neural stem cell-derived neurons. We predicted the target genes of H19 and discovered that H19 directly interacts with miR-325-3p, which directly interacts with Ctbp2 in induced pluripotent stem cells and induced neural stem cells. Silencing H19 or Ctbp2 impaired induced neural stem cell proliferation, and miR-325-3p suppression restored the effect of H19 inhibition but not the effect of Ctbp2 inhibition. Furthermore, H19 silencing substantially promoted the neural differentiation of induced neural stem cells and did not induce apoptosis of induced neural stem cells. Notably, silencing H19 in induced neural stem cell grafts markedly accelerated the neurological recovery of closed head injury mice. Our results reveal that H19 regulates the neurogenesis of induced neural stem cells. H19 inhibition may promote the neural differentiation of induced neural stem cells, which is closely associated with neurological recovery following closed head injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.