Abstract

BackgroundEpithelial ovarian cancer (EOC) is the malignant tumor of the female reproductive system with the highest fatality rate. Tolerance of chemotherapeutic drugs like cisplatin (DDP) occurring in very early stage is one of the important factors of the poor prognosis of epithelial ovarian cancer. Here we aim to study the dysregulation of a particular long noncoding RNA, lncRNA GAS5, and its role in EOC progression.MethodsThe low expression of lncRNA GAS5 in EOC tissues and OC cell lines was determined by microarray analyses and Real-Time qPCR. Flow cytometer assays were used to detect cell cycle and apoptosis of OC cells. CCK8 assay were performed to investigate the DDP sensitivity of OC cells. Western blot was carried out to detect cell growth markers, apoptotic markers, PARP1, E2F4, MAPK pathway protein expression and other protein expression in OC cell lines. The binding of GAS5 and E2F4 were proved by RNA pull-down and RIP assay. The effect of E2F4 on PARP1 were determined by CHIP-qPCR assay and luciferase reporter assay. The effect of lncRNA GAS5 on OC cells was assessed in vitro and in vivo.ResultsBy microarray (3 EOC tissues νs. 3 normal ovary tissues) and RT- qPCR (53 EOC tissues νs. 10 normal ovary tissues) we identified lncRNA GAS5 to be dramatically low expressed in EOC samples and correlated with prognosis. Compared with sensitive cell lines, GAS5 was also low expressed in DDP resistant OC cell lines, and over-expression of GAS5 significantly enhanced the sensitivity of OC cells to DDP in vivo and in vitro. Meanwhile the over-expression of GAS5 also caused OC cells G0/G1 arrest and apoptosis increase. Mechanistically, GAS5 might regulate PARP1 expression by recruiting the transcription factor E2F4 to its promoter, and then affect the MAPK pathway activity. Due to the 5’TOP structure, GAS5 could be regulated by transcription inhibitor rapamycin in OC cells.ConclusionHere we explored the specific mechanisms of EOC cisplatin resistance and tumor progress due to lncRNA-GAS5, presented the GAS5-E2F4-PARP1-MAPK axis and its role in OC drug-sensitivity and progression for the first time, and the results may provide experimental basis for clinical application.

Highlights

  • Epithelial ovarian cancer (EOC) is the malignant tumor of the female reproductive system with the highest fatality rate

  • In addition to the reduction of intracellular drug accumulation, increased drug efflux and drug inactivation caused by multi-drug resistance-related genes and their protein products such as P-glycoprotein (MDR1/P-gp), lung resistance associated protein (LRP), glutathione transferase (GST), etc.; and the classical resistance mechanisms such as DNA damage response pathway (DDR) activation; drug targets abnormalities or drug failure caused by abnormal regulation of apoptosis, metastasis or proliferation-related pathways are new directions of recent researches on molecular mechanisms of EOC drug resistance

  • For the first time, we presented that GAS5 may regulate Poly (ADP-ribose) Polymerase1 (PARP1) expression by recruiting the transcription factor E2F4 to its promoter, and affect MAPK pathway activity as well, thereby it may enhanced chemosensitivity by promoting apoptosis and causing cell cycle arrest of Ovarian cancer (OC) cells

Read more

Summary

Introduction

Epithelial ovarian cancer (EOC) is the malignant tumor of the female reproductive system with the highest fatality rate. Tolerance of chemotherapeutic drugs like cisplatin (DDP) occurring in very early stage is one of the important factors of the poor prognosis of epithelial ovarian cancer. Early metastasis and drug resistance result in poor prognosis of EOC [4]. Exploring the mechanism and regulation pathway of EOC drug resistance is essential to improve the survival benefit of EOC patients. The epigenetic regulation of key genes and proteins on the above drug resistance related pathways has become a hot spot in the study of tumor resistance interventions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call