Abstract

The accurate role of ANRIL in cataract is poorly understood. We aimed to reveal the effects of ANRIL on H2O2-treated HLECs, SRA01/04, as well as the regulatory mechanisms. Oxidative stress model of HLECs was induced by H2O2. Cell injury was evaluated according to cell proliferation, apoptosis and DNA damage using CCK-8 assay/flow cytometry and TUNEL assays/γH2AX staining. Expressions of ANRIL and miR-21 in HLECs were determined by RT-qPCR. The effects of miR-21, miR-34a and miR-122-5p inhibition as well as AMPK and β-catenin on HLECs with ANRIL overexpression and H2O2 stimulation were analyzed. In vivo experiment was performed via RT-qPCR. H2O2 repressed proliferation and induced apoptosis or DNA damage in HLECs. Those alterations induced by H2O2 were attenuated by ANRIL overexpression. MiR-21 was positively regulated by ANRIL, and both of them were repressed in H2O2-induced HLECs and cataract patient tissues. Inhibition of miR-21 but not miR-34a or miR-122-5p reversed the effects of ANRIL on H2O2-treated HLECs. Phosphorylation of AMPK and expression of β-catenin were increased by ANRIL via regulating miR-21. AMPK and β-catenin affected beneficial function of ANRIL-miR-21 axis.Therefore, lncRNA ANRIL attenuated H2O2-induced cell injury in HELCs via up-regulating miR-21 via the activation of AMPK and β-catenin.

Highlights

  • Cataract is the loss of normal transparency of the crystalline lens, which can reduce light transmission to the retina, resulting in decreased visual acuity and functional disability [1, 2]

  • We constructed oxidative stress model of human lens epithelial cells (HLECs) and found Long non-coding RNAs (lncRNAs) Antisense non-coding RNA in the INK4 locus (ANRIL) could attenuate H2O2-induced cell injury. miR-21 expression was positively regulated by lncRNA ANRIL expression, and miR-21 inhibition could reverse the effects of lncRNA ANRIL on HLECs under stimulation of H2O2

  • Phosphorylation of AMPK and expression of β-catenin were increased by lncRNA ANRIL, possibly through up-regulating miR-21

Read more

Summary

Introduction

Cataract is the loss of normal transparency of the crystalline lens, which can reduce light transmission to the retina, resulting in decreased visual acuity and functional disability [1, 2]. As a leading cause of blindness, cataract accounts for approximately half of the cases of blindness worldwide [3]. The number of people suffered cataract in the United States is going to reach 50 million by the 2050 due to the increase of life expectancy [4]. Several risk factors such as diarrhea, aging, sunlight, smoking, diabetes, malnutrition, hypertension and renal failure have been identified for cataract formation [5, 6]. Previous studies have proved that the apoptosis of lens epithelial cells is a common cellular basis for the formation of non-congenital cataract in human and mammalians [7, 8]. Proliferation and apoptosis of lens epithelial cells are of great importance for development of cataract

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.