Abstract

We solve four similar problems: For every fixed $s$ and large $n$, we describe all values of $n_1,\ldots,n_s$ such that for every $2$-edge-coloring of the complete $s$-partite graph $K_{n_1,\ldots,n_s}$ there exists a monochromatic (i) cycle $C_{2n}$ with $2n$ vertices, (ii) cycle $C_{\geq 2n}$ with at least $2n$ vertices, (iii) path $P_{2n}$ with $2n$ vertices, and (iv) path $P_{2n+1}$ with $2n+1$ vertices. This implies a generalization for large $n$ of the conjecture by Gy\'arf\'as, Ruszink\'o, S\'ark\H{o}zy and Szemer\'edi that for every $2$-edge-coloring of the complete $3$-partite graph $K_{n,n,n}$ there is a monochromatic path $P_{2n+1}$. An important tool is our recent stability theorem on monochromatic connected matchings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.