Abstract

Ever since H. E. Hurst brought the concept of long memory time series to prominence in his study of river flows the origins of the so-called Hurst phenomena have remained elusive. Two sets of competing models have been proposed. The fractional Gaussian noises and their discrete time counter-part, the fractionally integrated processes, possess genuine long memory in the sense that the present state of a system has a temporal dependence on all past states. The alternative to these genuine long memory models are models which are non-stationary in the mean but for physical reasons are constrained to lie in a bounded range, hence on visual inspection appear to be stationary. In these models the long memory is merely an artifact of the method of analysis. There are now a growing number of millenial scale temperature reconstructions available. In this paper we present a new way of looking at long memory in these reconstructions and proxies, which gives support to them being described by the non-stationary models. The implications for climatic change are that the temperature time series are not mean reverting. There is no evidence to support the idea that the observed rise in global temperatures are a natural fluctuation which will reverse in the near future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.