Abstract

We have obtained first solid evidence of strong charge separation that is caused by relaxing localized electrons in a polar medium: Space-charge gratings induced in highly-doped LiNbO(3):Fe crystals by interfering nanosecond light pulses at 532 nm show a highly peculiar long term behavior (buildup or/and decay) in the dark. It depends strongly on the applied electric field E(0) (ranging from -140 to +640 kV/cm) and occurs on a time scale of (1 - 100) s which is much larger than the relaxation time of photo-electrons and smaller than the dark dielectric relaxation time. All peculiarities observed are fully described by a charge-transport model that incorporates the energy relaxation of electrons within a band of localized Fe(2+) states and a long-living, field-gradient-independent "polar current" directed along the polar axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.