Abstract

Deep-inelastic reactions have been used to populate high-spin states in the iridium isotopes. New results include the identification of particularly long-lived three-quasiparticle isomers in 191Ir and 193Ir, with mean-lives of 8.2(7) s and 180(3) μs respectively, decaying into newly identified states of the h11/2 proton bands and into other structures. Spins and parities of Jπ=31/2+ are suggested for both, consistent with coupling of the 11/2−[505] proton to the 10− two-neutron excitations in the cores. These and other configurations are discussed in the context of configuration constrained potential-energy-surface calculations. All calculated intrinsic states are expected to be associated with triaxial shapes and the extreme isomerism observed is attributed to spin-trapping rather than K-hindrance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.