Abstract

Parahydrogen induced polarization was employed to prepare a relatively long-lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ∼0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low-field MRI to preserve the initial correlated state with a much longer decay time TLLSS =(4.7±0.5) s. While the direct detection at low-magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin-lock induced crossing (SLIC) at this low magnetic field transforms the long-lived correlated state into an observable nuclear magnetization suitable for MRI with sub-millimeter and sub-second spatial and temporal resolution, respectively. Propane is a non-toxic gas, and therefore, these results potentially enable low-cost high-resolution high-speed MRI of gases for functional imaging of lungs and other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call