Abstract

AbstractN‐methylacrylamide (NMAAm) and N‐methylmethacrylamide (NMMAm) were polymerized to give polymer microspheres containing living propagating radicals. The microsphere polymer radicals were allowed to react with some binary mixtures of vinyl monomers including alternating copolymerization combinations. The reaction processes were investigated by ESR spectroscopy. In the poly(NMMAm) radical/methyl methacrylate (MMA)/styrene (St) system, the propagating radical from MMA was mainly observed at the higher MMA concentration, while polySt radical prevailed at the lower MMA concentration. In the poly(NMMAm) radical/α‐methylstyrene (α‐MeSt)/diethyl fumarate system, the α‐MeSt radical was exclusively observed, while the maleic anhydride (MAn) radical was predominantly observed in the α‐MeSt/MAn system. In the MAn/diphenylethylene system, the propagating radicals from both monomers were observed at comparable concentrations. The poly(NMAAm) microsphere radical behaved differently in the reaction with the MMA/St mixture. The poly(NMAAm) microsphere was found to incorporate preferentially St, leading to formation of the St radical. The St preference was enhanced in the St/cyclohexyl methacrylate (CHMA) system. These results were in agreement with those of block copolymerization via the reaction of poly(NMAAm) radical with the MMA/St or CHMA/St mixture, where the compositions of the resulting polymers were analyzed by pyrolysis gas chromatography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.