Abstract

We report the observation of a doublet structure in the low-temperature photoluminescence of interlayer excitons in heterostructures consisting of monolayer MoSe2 and WSe2. Both peaks exhibit long photoluminescence lifetimes of several tens of nanoseconds up to 100 ns verifying the interlayer nature of the excitons. The energy and line width of both peaks show unusual temperature and power dependences. While the low-energy peak dominates the spectra at low power and low temperatures, the high-energy peak dominates for high power and temperature. We explain the findings by two kinds of interlayer excitons being either indirect or quasi-direct in reciprocal space. Our results provide fundamental insights into long-lived interlayer states in van der Waals heterostructures with possible bosonic many-body interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.