Abstract
Estimates for the lifetime of collision complexes formed during ultracold molecular collisions based on density-of-states arguments are shown to be consistent with similar estimates based on classical trajectory calculations. In the classical version, these collisions are shown to exhibit chaos and their fractal dimension is calculated versus collision energy. From these results, a picture emerges that ultracold collisions are likely classically ergodic, justifying the density-of-states estimates for lifetimes. These results point the way toward using the techniques of classical and quantum chaos to interpret molecular collisions in the ultracold regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.