Abstract

Keggin and Dawson-type polyoxometalates (POMs) covalently grafted to heteroleptic cyclometalated iridium(III) complexes (POM–[Ir] dyads) have been prepared by postfunctionalization of organosilyl and organotin POM derivatives. Electronic properties of these 4 photosensitized POM–[Ir] dyads were evaluated by electrochemical measurements and theoretical calculations. These studies reveal that the electron acceptor character of the POMs vary with structural class (Keggin vs. Dawson) and chemical anchorage (organosilyl vs. organotin); they reveal the poor electronic interaction between the POMs and the chromophores. Combined transient absorption and spectroelectrochemical measurements provide evidence for the formation of photoinduced electron transfer from the chromophore to the POM. The lifetimes of the charge-separated states (ranging from ns to hundreds of ns) are the longest values reported for covalently bonded photosensitized POMs. The functionalization of the heteroleptic cyclometalated iridium(III) on the picolinate ligand provides directionality to the photoinduced electron transfer by enhancing charge separation and delaying charge recombination The kinetics of the photoinduced electron transfers are rationalized by Marcus theory. We conclude that the charge separation and charge recombination respectively occur in the Marcus normal and inverted regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.