Abstract

Developing low-cost and high-performance bifunctional oxygen electrocatalysts is essential for commercial realization of regenerative fuel cells and rechargeable metal air batteries. Iron carbide (Fe3C) is an ideal electrocatalyst candidate; however, its poor oxygen evolution reaction (OER) activity and stability make it serve only as a unifunctional oxygen reduction reaction (ORR) electrocatalyst. Here, we report a robust bifunctional electrocatalyst consisting of manganese–iron binary carbide (MnxFe3–xC) nanoparticles armored by nitrogen-doped graphitic carbon (MnxFe3–xC/NC). Synthesis involved facile pyrolysis of a trimetallic (Fe, Mn, Zn) zeolitic imidazolate framework. Incorporation of Mn modulated the electronic properties of Fe3C and the surrounding carbon, enhancing ORR and OER activities. MnxFe3–xC, well-armored by carbon layers, displayed high resistance to oxidation and corrosion. The assembled Zn-air battery (ZAB) exhibited a large peak power density (160 mW cm–2 at 250 mA cm–2) with an energy...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call