Abstract
We study the dynamics of avalanche ionization of pure helium nanodroplets activated by a weak extreme-ultraviolet (XUV) pulse and driven by an intense near-infrared (NIR) pulse. In addition to a transient enhancement of ignition of a nanoplasma at short delay times fs, long-term activation of the nanodroplets lasting up to a few nanoseconds is observed. Molecular dynamics simulations suggest that the short-term activation is caused by the injection of seed electrons into the droplets by XUV photoemission. Long-term activation appears due to electrons remaining loosely bound to photoions which form stable ‘snowball’ structures in the droplets. Thus, we show that XUV irradiation can induce long-lasting changes of the strong-field optical properties of nanoparticles, potentially opening new routes to controlling avalanche-ionization phenomena in nanostructures and condensed-phase systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.