Abstract

Malfunctioning synaptic plasticity is one of the major mechanisms contributing to the development of chronic pain. We studied spike-timing dependent depression (tLTD) in the anterior cingulate cortex (ACC) of male mice, a brain region involved in processing emotional aspects of pain. tLTD onto layer 5 pyramidal neurons depended on postsynaptic calcium-influx through GluN2B-containing NMDARs and retrograde signaling via nitric oxide to reduce presynaptic release probability. After chronic constriction injury of the sciatic nerve, a model for neuropathic pain, tLTD was rapidly impaired; and this phenotype persisted even beyond the time of recovery from mechanical sensitization. Exclusion of GluN2B-containing NMDARs from the postsynaptic site specifically at projections from the anterior thalamus to the ACC caused the tLTD phenotype, whereas signaling downstream of nitric oxide synthesis remained intact. Thus, transient neuropathic pain can leave a permanent trace manifested in the disturbance of synaptic plasticity in a specific afferent pathway to the cortex.SIGNIFICANCE STATEMENT Synaptic plasticity is one of the main mechanisms that contributes to the development of chronic pain. Most studies have focused on potentiation of excitatory synaptic transmission, but very little is known about the reduction in synaptic strength. We have focused on the ACC, a brain region associated with the processing of emotional and affective components of pain. We studied spike-timing dependent LTD, which is a biologically plausible form of synaptic plasticity, that depends on the relative timing of presynaptic and postsynaptic activity. We found a long-lasting and pathway-specific suppression of the induction mechanism for spike-timing dependent LTD from the anterior thalamus to the ACC, suggesting that this pathology might be involved in altered emotional processing in pain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.