Abstract

Cannabinoid administration modulates dopamine transmission via an indirect, multisynaptic mechanism that includes the activation of cannabinoid type-1 receptor (CB1R). The present study evaluated in rodents, the effects of acute and chronic (20 days) WIN55,212-2 administration, a non-selective CB1R agonist, on dopamine uptake and synthesis in the mesolimbic and nigrostriatal dopaminergic pathways and associate them to its effects on the endocannabinoid system. The effect of spontaneous withdrawal, after different abstinence periods (7 days, 20 days), was also assessed. Acute and chronic administration of WIN55,212-2 decreased dopamine transporter (DAT) binding and mRNA levels, as well as tyrosine hydroxylase (TH) mRNA expression in the substantia nigra (SN) and ventral tegmental area (VTA). In the striatum, chronic WIN55,212-2 administration led to decreased protein expression of DAT and TH, whereas no alterations were observed after acute administration, suggesting a diminished dopamine uptake and synthesis after chronic agonist treatment. Furthermore, after chronic agonist treatment, we observed reduced CB1R binding and mRNA levels in SN and striatum, providing evidence for a possible regulatory role of the endocannabinoid system on dopaminergic function. Seven days after WIN55,212-2 cessation, we observed a rebound increase in mRNA, binding and total protein levels of DAT and TH in VTA, SN and striatum proposing the existence of a biphasic expression pattern, which was also observed in CB1R binding levels. Within the 20-day period of abstinence, TH mRNA and protein levels and CB1R binding levels remain increased. The above results indicate that chronic CB1R agonist treatment induces long-lasting control of the mesostriatal dopaminergic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call