Abstract

Aqueous Zn-ion batteries have attracted much attention due to their unique high safety and low-cost merits. However, their practical applications are at a slow pace due to their short cycle life, which fundamentally results from the instability of the positive/negative electrode interface in the traditional dilute aqueous electrolytes with high water activity. Developing highly concentrated electrolyte (HCE) has been considered as an effective solution. Unlike previous studies of single salt-based HCE (SS-HCE), herein, a new dual-salt HCE (15 m ZnCl2 + 10 m NH4NH2SO3 DS-HCE) was proposed for the first time. DS-HCE was proven to simultaneously possess higher conductivity than traditional dilute electrolytes and ultralow water activity of SS-HCE by the regulation of dual high-concentration salts on the solvation structure, which renders the Zn||Zn symmetric cell the record-long cycling life of 2200 h compared with those with SS-HCE (30 m ZnCl2, 300 h) and other reported HCEs. Additionally, the Zn||NH4V4O10 full cell with DS-HCE demonstrated impressed rate capability within a wide-range current densities from 0.1 to 10 A g−1. Moreover, at the high current density of 5 A g−1, the full cell shows almost 100% capacity retention after 4000 cycles, which indicates the promising future of the DS-HCE system for long-duration aqueous Zn-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.