Abstract

The feasibility of trust-free long-haul quantum key distribution (QKD) is addressed. We combine measurement-device-independent QKD, as an access technology, with a quantum repeater setup, at the core of future quantum communication networks. This will provide a quantum link none of whose intermediary nodes need to be trusted, or, in our terminology, a trust-free QKD link. As the main figure of merit, we calculate the secret key generation rate when a particular probabilistic quantum repeater protocol is in use. We assume the users are equipped with imperfect single photon sources, which can possibly emit two single photons, or laser sources to implement decoy-state techniques. We consider apparatus imperfection, such as quantum efficiency and dark count of photodetectors, path loss of the channel, and writing and reading efficiencies of quantum memories. By optimizing different system parameters, we estimate the maximum distance over which users can share secret keys when a finite number of memories are employed in the repeater setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call