Abstract

BackgroundThe application of the sterile insect technique (SIT) requires mass-production of sterile males of good biological quality. The size of the project area will in most cases determine whether it is more cost effective to produce the sterile flies locally (and invest in a mass-rearing facility) or import the sterile flies from a mass-rearing facility that is located in another country. This study aimed at assessing the effect of long distance transport of sterile male Glossina palpalis gambiensis pupae on adult male fly yield.MethodsThe male pupae were produced at the Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso, and shipped with a commercial courier service in insulated transport boxes at a temperature of ±10°C to Senegal (±36 h of transport). Upon arrival in the insectary in Dakar, the pupae were transferred to an emergence room and the flies monitored for 3–6 days.ResultsThe results showed that the used system of isothermal boxes that contained phase change material packs (S8) managed to keep the temperature at around 10°C which prevented male fly emergence during transport. The emergence rate was significantly higher for pupae from batch 2 (chilled at 4°C for one day in the source insectary before transport) than those from batch 1 (chilled at 4°C for two days in the source insectary before transport) i.e. an average (±sd) of 76.1 ± 13.2% and 72.2 ± 14.3%, respectively with a small proportion emerging during transport (0.7 ± 1.7% and 0.9 ± 2.9%, respectively). Among the emerged flies, the percentage with deformed (not fully expanded) wings was significantly higher for flies from batch 1 (12.0 ± 6.3%) than from batch 2 (10.7 ± 7.5%). The amount of sterile males available for release as a proportion of the total pupae shipped was 65.8 ± 13.3% and 61.7 ± 14.7% for batch 1 and 2 pupae, respectively.ConclusionsThe results also showed that the temperature inside the parcel must be controlled around 10°C with a maximal deviation of 3°C to maximize the male yield.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-015-0869-3) contains supplementary material, which is available to authorized users.

Highlights

  • The application of the sterile insect technique (SIT) requires mass-production of sterile males of good biological quality

  • Most of the intensive milk production systems of suburban Senegal that keep mainly exotic cattle breeds such as Montbeliard, Jersiaise, Holstein and Girare found in this area [1,2]. This area is infested with the tsetse fly Glossina palpalis gambiensis Vanderplank (Diptera: Glossinidae) which is the main vector of Trypanosoma vivax and T. congolense [3], parasites that cause the debilitating disease African Animal Trypanosomosis (AAT) in livestock [4]

  • Results from the baseline data collection and the feasibility studies in the Niayes have indicated that G. p. gambiensis was the only tsetse species present [5] and that the various populations were genetically isolated from the nearest population in Missira located >200 km to the south-east [9]

Read more

Summary

Introduction

The application of the sterile insect technique (SIT) requires mass-production of sterile males of good biological quality. In 2000, the African Heads of State and Government decided to increase efforts to address the tsetse and trypanosomosis problem on the African continent and created the Pan-African Tsetse and Trypanosomosis Eradication Campaign (PATTEC) [8] In this context, the Government of Senegal initiated in 2005 a program called “Projet d’éradication des mouches tsé-tsé dans les Niayes” [3]. Gambiensis was sexually compatible with the populations inhabiting the Niayes [10] The results of these studies prompted the project stakeholders in 2011 to develop and implement a strategy of eradication following area-wide integrated pest management (AW-IPM) principles whereby several tsetse control tactics would be combined with the sterile insect technique (SIT) [5,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call