Abstract

Terminally differentiated neurons derived from a human teratocarcinoma cell line (NT2N or hNT neurons) are promising as a cell source for transplantation, as they have been shown to be safe for transplantation in humans. We have shown previously that hNT neurons can express a catecholaminergic phenotype in a rat Parkinson model. In this study, we investigated the long-term survival and ability of hNT neurons to express tyrosine hydroxylase and reconstruct the dopamine-denervated nigrostriatal pathway. Hemiparkinsonian rats received grafts of 400,000 viable hNT neurons into each of the denervated striatum and substantia nigra. Robust hNT grafts were detected up to 24 weeks posttransplantation, although few cells expressed tyrosine hydroxylase. Many hNT fibers were often associated with ipsilateral and contralateral white matter tracts--corpus callosum, rostral migratory stream, optic tract, and external capsule. Fewer fibers were associated with the superior cerebellar peduncle, medial lemniscus, and nigrostriatal pathway. Axons also projected into the frontal cortex and extended parallel to the surface of the brain in the superficial cortical layers. These pathways were seen in all grafted animals, suggesting that specific guidance cues exist in the adult brain governing hNT fiber outgrowth. Injured adult axons and transplanted embryonic neuronal axons rarely extend for such distances in the adult nervous system. We propose that elucidating the factors promoting and guiding hNT axonal outgrowth could provide important clues to enhancing regeneration and target reinnervation in the adult brain, two factors of critical importance for cell restoration strategies aimed at brain repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.